An estimator of the inverse covariance matrix and its application to ML parameter estimation in dynamical systems

نویسندگان

  • B. David
  • Georges Bastin
چکیده

An exact formula of the inverse covariance matrix of an autoregressive stochastic process is obtained using the Gohberg}Semencul explicit inverse of the Toeplitz matrix. This formula is used to build an estimator of the inverse covariance matrix of a stochastic process based on a single realization. In this paper, we show that this estimator can be conveniently applied to maximum likelihood parameter estimation in nonlinear dynamical system with correlated measurement noise. The e$ciency of the estimation scheme is illustrated via Monte-Carlo simulations. It is shown that the statistical properties of the estimated parameters are largely improved using the proposed inverse covariance matrix estimator in comparison to the classical variance estimator. ( 2000 Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Concomitants of Order Statistics from Farlie-Gumbel-Morgenstern Bivariate Lomax Distribution and its Application in Estimation

‎In this paper‎, ‎we have dealt with the distribution theory of concomitants of order statistics arising from Farlie-Gumbel-Morgenstern bivariate Lomax distribution‎. ‎We have discussed the estimation of the parameters associated with the distribution of the variable Y of primary interest‎, ‎based on the ranked set sample defined by ordering the marginal observations...

متن کامل

The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics

In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...

متن کامل

Parameter estimation in nonlinear systems with auto and crosscorrelated noise

The Gohberg}Heinig explicit formula for the inversion of a block-Toeplitz matrix is used to build an estimator of the inverse of the covariance matrix of a multivariable autoregressive process. This estimator is then conveniently applied to maximum likelihood parameter estimation in nonlinear dynamical systems with output measurements corrupted by additive auto and crosscorrelated noise. An app...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

A Maximum Likelihood Parameter Estimation Method for Nonlinear Dynamical Systems

This paper presents an original method for maximum likelihood parameter estimation in nonlinear dynamical systems with highly correlated residuals. The method relies on an autoregressive representation of the residuals to build an estimate of the inverse of its covariante matrix. Theoretical concepts are developed and we provides a successful application of the method on a twoparameters estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Automatica

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2001